EXERCICE N°1:

A) Soit MNPQ un carré avec MN=6. Et I son centre Calculer les produits scalaires MN.OP; MN.PN; IN.IP et OI.NI

- B) Soit ABC un triangle tel que AB=2, AC=3 et AB.AC=4
 - 1- Démontrer que le triangle ABC est rectangle en B
 - 2- Calculer CA.CB

Exercice N°3:

Soit A et B deux points tel que AB=4; I=A*B et G le barycentre des points pondérés (A, 1) et (B,-2)

- 1. a. Montrer que GA = 2BA
 - b. En déduire GA et GB
- 2. Déterminer l'ensemble E des points M du plan tel que:

$$MA^2-MB^2=7$$

3. Soit H = A*I

Déterminer l'ensemble D des points M du plan tel que:

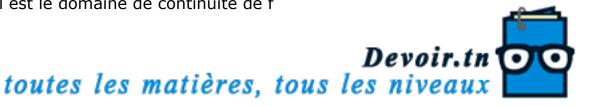
$$MA^2-MB^2=8$$

Exercice Nº 4:

Une urne contient quatre boules blanches numérotées 0, 0, 1, 1 et deux boules noires numérotées 0, 2.

- 1. On tire simultanément deux boules de l'urne
 - a. Donner le nombre N de tous les tirages possibles
 - b. Donner le nombre N₁ des triages d'avoir deux boules de même couleur
 - c. Déduire le nombre N₂ des triages d'avoir deux boules de couleur différent
 - d. Donner le nombre N₃ des tirages d'avoir deux boules qui portent des numéros pairs
- 2. On tire successivement sans remise trios boules de l'urne
 - a. Donner le nombre N' de tous les tirages possibles
 - b. Donner le nombre N'1 des triages comportant deux couleurs
 - c. Donner le nombre N'₃ des tirages d'avoir aux moins une boules qui porte un numéro pair

EXERCICE N°5:


Soit f:
$$IR \rightarrow IR, x \mapsto \begin{cases} \frac{\sqrt{2x^2 + 7} - 3}{x - 1} & \text{si } x \neq 1 \\ f(1) = \frac{2}{3} \end{cases}$$

Etudier la continuité de f sur IR

EXERCICE N°6:

Soit f:
$$IR \to IR$$
, $x \mapsto \begin{cases} x\sqrt{\frac{1-x}{1+x}} & si - 1 < x < 1 \\ x^2 - x & si non \end{cases}$

- 1- Etudier la continuité de f f en -1 et 1
 - 2- Quel est le domaine de continuité de f

